Buckling transition and boundary layer in non-Euclidean plates.
نویسندگان
چکیده
Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.
منابع مشابه
Effect of Non-ideal Boundary Conditions on Buckling of Rectangular Functionally Graded Plates
We have solved the governing equations for the buckling of rectangular functionally graded plates which one of its edges has small non-zero deflection and moment. For the case that the material properties obey a power law in the thickness direction, an analytical solution is obtained using the perturbation series. The applied in-plane load is assumed to be perpendicular to the edge which has no...
متن کاملNonlocal Mechanical Buckling Analysis of Nano Single Layer Sheets Using Differential Quadrature method
The following article investigates buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account nonlocal elasticity theory (Eringen), principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained based on displacem...
متن کاملNon-Local Thermo-Elastic Buckling Analysis of Multi-Layer Annular/Circular Nano-Plates Based on First and Third Order Shear Deformation Theories Using DQ Method
In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shear deformation theories, the governing equations are derived. The van der Waals interaction between the layers is simulated for multi-...
متن کاملThe new version of Differential Quadrature Buckling Analyses of FGM Rectangular Plates Under Non-Uniform Distributed In-Plane Loading
In this paper the buckling coefficient of FGM rectangular plates calculated by the new version of differential quadrature method (DQM). At the first the governing differential equation for plate has been calculated and then according to the new version of differential quadrature method (DQM) the existence derivatives in equation , convert to the amounts of function in the grid points inside of ...
متن کاملBuckling Analysis of Polar Orthotropic Circular and Annular Plates of Uniform and Linearly Varying Thickness with Different Edge Conditions
This paper investigates symmetrical buckling of orthotropic circular and annular plates of continuous variable thickness. Uniform compression loading is applied at the plate outer boundary. Thickness varies linearly along radial direction. Inner edge is free, while outer edge has different boundary conditions: clamped, simply and elastically restraint against rotation. The optimized Ritz method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2009